top of page

Karolina Szczepanowska

Group Leader

Laboratory of Metabolic Quality Control

Express Interview


Dream profession of your childhood?

As a 3rd-grader, I made an odd (but super official) statement to my family that I will become a scientist one day. Then I followed.

Your dream profession - now?

Here I am.

What melody do you hum when working in the lab?

Not much. I am busy enough talking to my students (and to myself!).

Your favourite joke about scientists?

Girls can’t STEM.

Short Bio


Dr. Karolina Szczepanowska completed her Ph.D. in 2011 under the supervision of Francoise Foury at the University of Louvain, where she studied the mechanism entangled in mitochondrial genome maintenance. Next, she joined the lab of Aleksandra Trifunovic at the University of Cologne and Cluster of Excellence Cellular Stress Responses in Aging-Associated Disease. Her postdoctoral research focused on dissecting the secrets of mitochondrial protein homeostasis and quality control in mice, tissue cultures, and worms using advanced proteomic and biochemical approaches. In 2021 she established her research group at the ReMedy/IMol PAS.

Research Interest


Laboratory of Metabolic Quality Control

Karolina’s group is fascinated by the mechanisms underlying the regulation of cellular metabolism. Their research focuses on the quality control of mitochondrial respiratory complexes, a set of elaborative molecular machines critical for energy production and metabolic fluxes. The major aim is to understand how the respiratory complexes are surveilled, repaired and turned over, particularly upon exposure to stress. Their findings will help design new therapeutic strategies raised against diseases associated with the energetic crisis in our cells.




  • Erasmus Fellowship for Research Project



  • F.N.R.S. Project Grant, Brussels, Belgium

2019 - 2020

  • Advanced Postdoc Grant, CRC/SFB1218




  • Szczepanowska K*, Trifunovic A*. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. Biochim Biophys Acta Bioenerg. 2021 Jan 6;1862(4):148365. doi: 10.1016/j.bbabio.2020.148365



  • Szczepanowska K*, Senft K, Heidler J, Herholz M, Kukat A, Höhne MN, Hofsetz E, Becker C, Kaspar S, Giese H, Zwicker K, Guerrero-Castillo S, Baumann L, Kauppila J, Rumyantseva A, Müller S, Frese CK, Brandt U, Riemer J, Wittig I, Trifunovic A.* A salvage pathway maintains highly functional respiratory complex I. Nature Communications 2020 Apr 2;11(1):1643. doi: 10.1038/s41467-020-15467-7.

  • Hofsetz E, Demir F, Szczepanowska K, Kukat A, Kizhakkedathu JN, Trifunovic A, Huesgen PF. The Mouse Heart Mitochondria N Terminome Provides Insights into ClpXP-Mediated Proteolysis. Mol Cell Proteomics. 2020 Aug;19(8):1330-1345. doi: 10.1074/mcp.RA120.002082.

  • Szczepanowska K*, Trifunovic A*. Mitochondrial DNA and aging. The Human Mitochondrial Genome. From basic biology to disease. Edited by Giuseppe Gasparre and Anna Maria Porcelli; 2020;



  • Herholz M, Cepeda E, Baumann L, Kukat A, Hermeling J, Maciej S, Szczepanowska K, Pavlenko V, Frommolt P, Trifunovic A. KLF-1 orchestrates a xenobiotic detoxification program essential for longevity of mitochondrial mutants. Nature Communications. 2019 Jul 25;10(1):3323. doi: 10.1038/s41467-019-11275-w.



  • Becker C, Kukat A, Szczepanowska K, Hermans S, Senft K, Brandscheid CP, Maiti P, Trifunovic A. CLPP deficiency protects against metabolic syndrome but hinders adaptive thermogenesis. EMBO Rep. 2018 May;19(5):e45126. doi: 10.15252/embr.201745126.


  • Szczepanowska K, Trifunovic A. Origins of mtDNA mutations in ageing. Essays Biochem. 2017 Jul 11;61(3):325-337. doi: 10.1042/EBC20160090.



  • Szczepanowska K, Maiti P, Kukat A, Hofsetz E, Nolte H, Senft K, Becker C, Ruzzenente B, Hornig-Do HT, Wibom R, Wiesner RJ, Krüger M, Trifunovic A. CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels. EMBO J. 2016 Dec 1;35(23):2566-2583.  doi: 10.15252/embj.201694253.

  • Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S, Maiti P, König T, Kukat A, Trifunovic A. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep. 2016 Jul;17(7):953-64.  doi: 10.15252/embr.201642077.

  • Islam MS, Nolte H, Jacob W, Ziegler AB, Pütz S, Grosjean Y, Szczepanowska K, Trifunovic A, Braun T, Heumann H, Heumann R, Hovemann B, Moore DJ, Krüger M. Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease. Hum Mol Genet. 2016 Dec 15;25(24):5365-5382. doi: 10.1093/hmg/ddw352.



  • Szczepanowska K, Trifunovic A. Different faces of mitochondrial DNA mutators. Biochim Biophys Acta. 2015 Nov;1847(11):1362-72. doi: 10.1016/j.bbabio.2015.05.016.



  • Foury F, Szczepanowska K. Antimutator alleles of yeast DNA polymerase gamma modulate the balance between DNA synthesis and excision. PLoS One. 2011;6(11):e27847. doi: 10.1371/journal.pone.0027847.



  • Szczepanowska K, Foury F. A cluster of pathogenic mutations in the 3'-5' exonuclease domain of DNA polymerase gamma defines a novel module coupling DNA synthesis and degradation. Hum Mol Genet. 2010 Sep 15;19(18):3516-29. doi: 10.1093/hmg/ddq267.

* As a co-corresponding author.

bottom of page