SUPPORTING
THE TOMORROW

In 2017 our team started with the ambitious ReMedy project "Regenerative Mechanisms for Health” carried on within the International Research Agendas program of the Foundation for Polish Science. 
In 2020 we became a cornerstone for the newly constituted institute of the Polish Academy of Sciences, created in partnership with University Medical Center Göttingen, Germany. The final and important step was a strategic agreement between PAS and the University of Warsaw concerning the joint project of setting up...

The International Institute of Molecular Mechanisms and Machines (IMol).

IMol has been established to conduct scientific research and provide training in the fields of biological, chemical, medical, biotechnological, bioinformatics, biophysical, pharmacological, and similar sciences, in the international environment conducive to collaborative efforts, research and development interactions with biotechnological industry, and wide dissemination of our results. We aim at the development of solutions that will help everyone on this planet live a safer life. 

Since all the research groups in ReMedy project will be organized at IMol upon the transfer of ReMedy funding from the University of Warsaw, they constitute the core of future IMol staff. 

SCIENTIFIC BOARD OF IMOL

The science research work of IMol is carried out under the guidance of the Scientific Board, consisting of  respected scientists from prestigious universities:

 

Massachusetts Institute of Technology,

Cambridge, MA, USA

PROF. PHILLIP A. SHARP

NOBEL LAUREATE

CHAIR

Friedrich Miescher Institute for Biomedical Research,

Switzerland

PROF.

WITOLD FILIPOWICZ

VICE CHAIR

International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, Warsaw, Poland

PROF.

AGNIESZKA CHACINSKA

Wellcome Trust Centre for Mitochondrial Research, Newcastle, UK

PROF.

ZOFIA CHRZANOWSKA - LIGHTOWLERS

The George S. Wise Faculty of Life Science, Tel Aviv University, Israel

PROF. EHUD GAZIT

International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, Warsaw, Poland

PROF.

MAGDA KONARSKA

Max Planck Institute for Biophysical Chemistry, Germany

PROF.

REINHARD LÜHRMANN

CEITEC – Central European Institute of Technology, Czech Republic

PROF.

MARY ANNE O´CONNELL

University of Pavia, Italy;

King’s College London, UK

PROF.

ANNALISA PASTORE

Cellular Biochemistry, University Medical Center Göttingen, Germany

PROF. PETER REHLING

Department of Neuro and Sensory Physiology, University Medical Center Göttingen, Germany

PROF. SILVIO RIZZOLI

Adam Mickiewicz University, Poznan, Poland

PROF.

ZOFIA SZWEYKOWSKA - KULINSKA

EXECUTIVE BOARD

Director

PROF.

AGNIESZKA CHACINSKA

Deputy Director for Science

PROF. MAGDA KONARSKA

Deputy Director

for Administration

JAROSLAW SKOWRON

 

RESEARCH GROUPS & CORE FACILITIES LEADERS

A. Chacińska zdjęcie.jpeg

PROF. AGNIESZKA CHACINSKA

Laboratory of Mitochondrial Biogenesis

 
GerlachPiotr_1400x1400_180dpi.JPG

PIOTR GERLACH, PHD

Laboratory of Structural

Virology

K_Szczepanowska.jpeg

KAROLINA SZCZEPANOWSKA, PHD

Laboratory of Metabolic Quality Control

MBarski_edited.jpg

MICHAL S. BARSKI, PHD

Laboratory of Structural

and Computational Biology

Konarska.png

PROF. MAGDA KONARSKA

Laboratory of RNA Biology

A-Marusiak.png

ANNA MARUSIAK, PHD

Laboratory of Molecular OncoSignalling

Halim fota.png

ABDELHALIM AZZI, PHD

Laboratory of Lipids and Chronobiology

Remigiusz Serwa -zdjęcie na stronę.jpg

REMIGIUSZ SERWA, PHD

The Proteomic Core Facility

A. Chacińska zdjęcie.jpeg

PROF. AGNIESZKA CHACINSKA

Laboratory of Mitochondrial Biogenesis

Mitochondria play a key role in metabolism and regulatory processes within a cell. Thus, the formation of mitochondria is essential for cellular function of every being in the eukaryotic kingdom, from unicellular organisms to mammals. Mitochondria comprise 1000-1500 cellular proteins, which are synthesized outside of the mitochondria in the cytosol.

 

The biogenesis of mitochondria relies on the efficient import, sorting, and maturation of proteins, all governed by conserved protein translocases and other complex biological machinery.

 

Our research explores novel and exciting links between protein transport mechanisms and mitochondrial protein homeostasis. We postulate the presence of unique mechanisms involved in protein biogenesis that involve crosstalk between the cytosol and mitochondrial compartments.

 

Our goal is to better understand the complex and dynamic processes involved in the formation of functional organelles, as well as the maintenance of cellular protein homeostasis and its failures, which result in pathology.

PROF. CHACINSKA LAB MEMBERS

Science degree
Name
Surname
Job Title
Email
BSc
Elżbieta
Grzelak
Technician
e.grzelak@imol.institute
MSc
Sonia
Ngati
Technician
s.ngati@imol.institute
PhD
Vanessa
Linke
Postdoctoral Researcher
v.linke@imol.institute
PhD
Tomasz
Stepkowski
Postdoctoral Researcher
t.stepkowski@imol.institute
PhD
Minji
Kim
Postdoctoral Researcher
m.kim@imol.institute
PhD
Michal
Wasilewski
Postdoctoral Researcher
m.wasilewski@imol.institute
PhD
Ben Hur
Mussulini
Postdoctoral Researcher
b.mussulini@imol.institute
PhD
Agata
Kodron
Postdoctoral Researcher
a.kodron@imol.institute
MSc
Praveenraj
Elancheliyan
PhD Student
p.elancheliyan@imol.institute
MSc
Mayra Alejandra
Borrero Landazábal
PhD Student
m.borrero@imol.institute
MSc
Biniyam
Tsegaye
PhD Student
b.tsegaye@imol.institute
MSc
Szymon
Golen
PhD Student
s.golen@imol.institute
 

PROF. MAGDA KONARSKA

Laboratory of RNA Biology

 
Magda Konarska.png

We use the yeast S. cerevisiae spliceosome as a model of a complex molecular machine; we want to understand the details of its architecture and function.

 

Our goal is to understand the complex set of substrate - spliceosome interactions during assembly and catalysis, which affect the positioning of reactive groups at the active site.

 

Our mechanistic studies in yeast will help us to understand the molecular interactions that influence splicing fidelity and alternative splicing in metazoan systems. The spliceosomal catalytic center undergoes dynamic changes during the catalytic phase of splicing; changes of relative stabilities of competing conformations at the catalytic center affect splicing catalysis, altering splicing fidelity and thus affecting the selection of splice site sequences for catalysis. These findings have implications for alternative splicing, common to most Eukaryotes.

 

We test new models of snRNA:snRNA interactions at the catalytic center implicated in the function of the catalytic triplex and positioning of the branch site.

 

We also study spliceosomal factors involved in the substrate positioning for catalysis, in particular, those containing disordered protein domains penetrating the catalytic center.

 

Another project investigates exon sequences that compensate for the defects of the intron 5’SS. Isolated yeast exon motifs are similar to metazoan exon enhancers; this striking sequence similarity suggests common underlying mechanisms of action. We hypothesize that yeast exon motifs represent substrate binding sites recognized by the spliceosome; we study the molecular mechanisms underlying their function.

PROF. KONARSKA LAB MEMBERS

Science Degree
Name
Surname
Job Title
Email
PhD
Marcin
Magnus
Postdoctoral Researcher
m.magnus@imol.institute
MSc
Jadwiga
Meissner
PhD Student
j.meissner@imol.institute
MSc
Ana Karina
D'Ambrosio Goncalves
PhD Student
a.dambrosio@imol.institute
MSc
Yusufu
Rouzimaimaiti
PhD Student
b.mussulini@imol.institute
 
A-Marusiak.png

ANNA MARUSIAK, PHD

Laboratory of Molecular OncoSignalling

The Laboratory of Molecular OncoSignalling is interested in cancer biology, cellular signalling during oncogenesis and the identification of novel targets for cancer therapies.

Signal transduction plays an important role in cancer development and protein kinases, which are the master regulators of signalling pathways, represent key targets in cancer treatment. Our group wants to understand how aberrant signalling in cancer cells contributes to cancer development, metastasis or therapy resistance, and how we can use that knowledge to design novel anticancer treatments.  

 

In particular, we focus on investigating oncogenic signalling activated by MLK4 in breast cancer. MLK4 is a member of Mixed-Lineage Kinase family of serine/threonine kinases that are activated by environmental stress, cytokines and growth factors and play a role in a variety of cellular processes. The members of MLK family have been involved in the regulation of a wide range of disorders including cancer, inflammation, metabolic and neurobiological disorders. Our lab investigates MLK4 signalling in breast cancer, where MLK4 is highly upregulated and contributes to malignant progression. One of our projects is focused on understanding the role of MLK4 in the response to chemotherapy in breast cancer. Furthermore, we aim to develop and validate the potency and efficacy of first-in-class MLK4-targeting compounds. We are also interested in uncovering the importance of MLK4-dependent cross-talk signalling between components of tumour microenvironment and breast cancer cells.

 

In our studies we use human and mouse cancer cell lines and syngeneic as well as xenograft tumour models in mice. We also use 3D cell cultures, flow cytometry, mass spectrometry and various phenotypic assays including invasion and migration assays.

DR. MARUSIAK LAB MEMBERS

Science Degree
Name
Surname
Job Title
Email
PhD
Anna
Marusiak
Group Leader
a.marusiak@imol.institute
PhD
Dagmara
Dymerska
Postdoctoral Researcher
d.dymerska@imol.institute
MD
Dawid
Mehlich
PhD Student
d.mehlich@imol.institute
Student
Agnieszka
Borowiec
Student
a.borowiec@imol.institute
MSc
Alicja
Mazan
PhD Student
a.mazan@imol.institute
Student
Michal
Lomiak
Student
m.lomiak@imol.institute
 
K_Szczepanowska_edited.jpg

KAROLINA SZCZEPANOWSKA, PHD

Laboratory of Metabolic Quality Control

Metabolism is firmly defined by the mitochondria. They dictate the bioenergetic capacity of our cells and provide us with critical metabolites. The bulk of cellular energy is generated by the elaborative molecular machines embedded inside the mitochondrial membranes, jointly known as the OXPHOS system. The everyday stress impacts the composition and functionality of OXPHOS, leading to its dysfunction. Consequently, compromised OXPHOS fitness has been implicated in a broad spectrum of disorders, including cancer, diabetes, obesity, ischemia-reperfusion injury, neurodegeneration, or aging.

 

What are the mechanisms that sculpture OXPHOS in response to challenges? Is there a way to repair it when injured by stress? We recently started to recognize that mitochondrial bioenergetics stays under the constant surveillance of dedicated proteostatic machinery. Yet, the exact mechanisms and responsible players remain mostly elusive.

 

Our research aims to dissect the mechanisms that mediate the quality control of OXPHOS exposed to disease-associated conditions and trace the molecular signals that steer its degradation. With the help of modern proteomics and advanced biochemical and molecular biology approaches, we discover the damage hot-spots in mammalian mitochondria and identify the factors responsible for their recognition and repair.

 

Our findings will help to understand how metabolic quality control contributes to the known cellular stress-responses. Furthermore, OXPHOS salvage can constitute an attractive target for novel therapies against a broad range of human diseases.

Dr. SZCZEPANOWSKA LAB MEMBERS

Science Degree
Name
Surname
Job Title
Email
PhD
Hanna
Salmonowicz
Postdoctoral Researcher
h.salmonowicz@imol.institute
MSc
Mahdi
Mahdi
PhD Student
m.mahdi@imol.institute
GerlachPiotr_1400x1400_180dpi_edited.jpg

PIOTR GERLACH, PHD

Laboratory of Structural Virology

RNA viruses are a diverse group of serious pathogens. Broadening structural insight into their molecular repertoire, and particularly virus-host intracellular interactions, is critical for complete understanding of infection mechanisms. Host translation is one of the major sites of the virus-host battlefront. Being a center of cellular stress response pathways, it is often abused by viruses to produce viral proteins. Of particular interest is the fate of cytoplasmic RNA granules during viral infection, as these compartments serve as a depository of host mRNA, stalled translation initiation complexes, and auxiliary factors that viruses can rely on.

 

My lab will combine structural biology expertise (cryo-EM, cryo-ET, and X-ray crystallography) with an in vivo platform – mammalian cell cultures transfected with minimal replicon systems, mimicking viral transcription and replication inside the infected cell. We will use this platform as a test tube for various assays, including functional and localisation studies, identification of novel host factors involved in viral infection, and structural analysis. Knowledge acquired on the way will open new research avenues that may ultimately lead to design of innovative therapies and broad-spectrum antivirals.

 

Dr. GERLACH LAB MEMBERS

Science Degree
Name
Surname
Job Title
Email
MSc
Eliana
Dukhno
PhD Student
e.dukhno@imol.institute
MSc
Moh Egy Rahman
Firdaus
PhD Student
f.rahman@imol.institute
 
MBarski_edited.jpg

MICHAL S. BARSKI, PHD

Laboratory of Structural and Computational Biology

The Barski lab is focusing on integrating structural biology (X-ray crystallography, cryo-EM, NMR, CD etc.) and computational biology (Big Data, ML, MD) techniques to understand viruses and other biological systems.

Phosphatase targeting in oncogenic viruses

It is increasingly more evident that many viruses (and especially cancer-causing viruses) hijack the cellular phosphatase PP2A to drive infection. The Barski Lab is interested in the structural and functional aspects of this phenomenon and is currently investigating the interaction of viral proteins with the B56 subunit of the human PP2A phosphatase. PP2A is one of the most abundant proteins in the human cell and therefore offers an unprecedented opportunity for viruses to modulate the cellular signalling networks to the virus’ advantage. The phenomenon of “promiscuous motif interactions” recently discovered by Barski et al. in the interaction between PP2A and the HTLV integrase is also the focus of the lab. Understanding this virus-host interaction is likely to lead to new therapeutic avenues, potentially useful against multiple viral infections. Multi-disciplinary structural and computational methods are employed in the lab and we collaborate with several key virology and cell biology labs in the UK and US to provide the most comprehensive, interdisciplinary data.

Viral protein intrinsic disorder

Many proteins in nature do not have a fixed structure, but are flexible – looking more like spaghetti. This is particularly important for viral proteins – whose genomic compaction drives the usefulness of such intrinsically disordered regions to help viral proteins adapt to the multitude of functions they may play in the infected cell. In the Barski Lab, we research new ways of analysing such proteins (incl. software development) and applying this knowledge to the structural and functional study of viral proteins.

 
Halim fota.png

ABDELHALIM AZZI, PHD

Laboratory of Lipids and Chronobiology

Circadian clocks control 24h rythms of several biological and physiological processes such as sleep-wake cycle, body temperature, hormone release and metabolism. Indeed, metabolic processes in the liver follow a very precise circadian pattern to control and optimise energy use throughout the light/dark cycle.

 

Metabolomic studies in mice and humans revealed that a large portion of metabolites changes in abundance every 24h, with daily variations in blood and saliva metabolites independent of sleep or feeding. Interestingly, the most rhythmic metabolites observed were lipids such as phosphatidylinositol (PtdIns). Phosphatidylinositol (PtdIns), a membrane phospholipids that can be phosphorylated at different positions of the inositol ring to generate phosphoinositides (PIs). Phosphoinositides kinases and phosphatases mediate the generation and interconversion of PIs. Despite their role in regulation of glucose and lipid metabolism, PI kinase and phosphatase activity with regards to their temporal circadian regulation of metabolism has not been yet investigated.

 

Our research aims to dissect the role of these enzymes in regulation of circadian metabolic processes using in vitro and in vivo systems. Our findings will improve our knowledge about the role of phosphoinositides in circadian physiology.

Remigiusz Serwa -zdjęcie na stronę.jpg

REMIGIUSZ SERWA, PHD

The Proteomic Core Facility

The Proteomic Core Facility is a specialized laboratory dedicated to the analysis of complex mixtures of peptides and proteins.

Our laboratory provides the following services:

  • sample preparation,

  • nanoLC-MS/MS measurements,

  • data analysis and mining.

Please visit our webpage for more details.  

 

We conduct research in chemical biology. Our main interest lies in the development of new chemoproteomic tools and methods and their application for the interrogation of interactions between biomolecules (e.g. metabolites, co-factors, post-translational modifiers) or synthetic bioactive molecules (e.g. approved medicines, drug candidates) with proteins in living cells, whole organisms, or disease model systems. Currently our study focuses on polyamine-protein interactions. Polyamines are ubiquitous small molecules that are essential for many physiological processes, while dysregulation of their cellular metabolism has been implicated in human diseases. Our research aims to develop and apply a unified set of molecular probes suitable for system-wide exploration of the biological networks involved in polyamine-protein interactions by proteomics.

Dr. SERWA LAB MEMBERS

Science Degree
Name
Surname
Job Title
Email
PhD
Stadnik
Dorota
Technician
d.stadnik@imol.institute
 
 
logo_bez_tla.png

The International Institute

of Molecular Mechanisms and Machines
Polish Academy of Sciences

Międzynarodowy Instytut

Mechanizmów i Maszyn Molekularnych

Polskiej Akademii Nauk

ul. B. Smetany 2

00-783 Warszawa, Poland

tel. +48 607 435 448

e-mail: welcome@imol.institute

NIP: PL7011013688

REGON: 387899800

RIN: RIN-II-71/20

ePUAP ID: IMol

ePUAP address: /IMol/imolpan

IMol Statute:

Polish Version (pdf)              English Version (pdf)

IMol Gender Equality Plan:

English Version (pdf)   

Bank account: PL 31 1130 1017 0020 1582 5520 0001

Bank Gospodarstwa Krajowego S.A.

Al. Jerozolimskie 7, 00-955 Warszawa, Poland

BIC (SWIFT): GOSKPLPW